Probabilistic Inference for Hybrid Bayesian Networks
نویسندگان
چکیده
A Bayesian network (BN) Charniak (1991) Pearl (1988) Jensen (1996) Neapolitan (1990) is a directed acyclic graph (DAG) consisting of nodes and arrows, in which node represents random variables, and arrow represents dependence relationship between connected nodes in the sense of the probabilistic, deterministic, or functional. Each node in BN has a specified conditional probability distribution (CPD), where all CPDs together parameterize the model. BNs have been used as powerful probabilistic knowledge models for decision support under uncertainty over a few decades, with numerous applications such as classification, medical diagnosis, bioinformatics, speech recognition, etc. One of the most important features BN has is the factorization of the joint probability space, so that conditional independence can be exploited to simplify modeling and save computations. However, BN model is only useful when combined with efficient algorithms for inference.
منابع مشابه
An Introduction to Inference and Learning in Bayesian Networks
Bayesian networks (BNs) are modern tools for modeling phenomena in dynamic and static systems and are used in different subjects such as disease diagnosis, weather forecasting, decision making and clustering. A BN is a graphical-probabilistic model which represents causal relations among random variables and consists of a directed acyclic graph and a set of conditional probabilities. Structure...
متن کاملLoad-Frequency Control: a GA based Bayesian Networks Multi-agent System
Bayesian Networks (BN) provides a robust probabilistic method of reasoning under uncertainty. They have been successfully applied in a variety of real-world tasks but they have received little attention in the area of load-frequency control (LFC). In practice, LFC systems use proportional-integral controllers. However since these controllers are designed using a linear model, the nonlinearities...
متن کاملRule-based joint fuzzy and probabilistic networks
One of the important challenges in Graphical models is the problem of dealing with the uncertainties in the problem. Among graphical networks, fuzzy cognitive map is only capable of modeling fuzzy uncertainty and the Bayesian network is only capable of modeling probabilistic uncertainty. In many real issues, we are faced with both fuzzy and probabilistic uncertainties. In these cases, the propo...
متن کاملA Surface Water Evaporation Estimation Model Using Bayesian Belief Networks with an Application to the Persian Gulf
Evaporation phenomena is a effective climate component on water resources management and has special importance in agriculture. In this paper, Bayesian belief networks (BBNs) as a non-linear modeling technique provide an evaporation estimation method under uncertainty. As a case study, we estimated the surface water evaporation of the Persian Gulf and worked with a dataset of observations ...
متن کاملA Surface Water Evaporation Estimation Model Using Bayesian Belief Networks with an Application to the Persian Gulf
Evaporation phenomena is a effective climate component on water resources management and has special importance in agriculture. In this paper, Bayesian belief networks (BBNs) as a non-linear modeling technique provide an evaporation estimation method under uncertainty. As a case study, we estimated the surface water evaporation of the Persian Gulf and worked with a dataset of observations ...
متن کاملEfficient Inference For Hybrid Bayesian Networks
EFFICIENT INFERENCE FOR HYBRID BAYESIAN NETWORKS Wei Sun, PhD George Mason University, 2007 Dissertation Director: Dr. KC Chang Uncertainty is everywhere in real life so we have to use stochastic model for most real-world problems. In general, both the systems mechanism and the observable measurements involve random noise. Therefore, probability theory and statistical estimation play important ...
متن کامل